Advertisement

Visualizing the charge order and topological defects in an overdoped (Bi,Pb)2Sr2CuO6+x superconductor

Abstract

Electronic charge order is a symmetry breaking state in high-Tc cuprate superconductors. In scanning tunneling microscopy, the detected charge-order-induced modulation is an electronic response of the charge order. For an overdoped (Bi,Pb)2Sr2CuO6+x sample, we apply scanning tunneling microscopy to explore local properties of the charge order. The ordering wavevector is non-dispersive with energy, which can be confirmed and determined. By extracting its order-parameter field, we identify dislocations in the stripe structure of the electronic modulation, which correspond to topological defects with an integer winding number of ±1. Through differential conductance maps over a series of reduced energies, the development of different response of the charge order is observed and a spatial evolution of topological defects is detected. The intensity of charge-order-induced modulation increases with energy and reaches its maximum when approaching the pseudogap energy. In this evolution, the topological defects decrease in density and migrate in space. Furthermore, we observe appearance and disappearance of closely spaced pairs of defects as energy changes. Our experimental results could inspire further studies of the charge order in both high-Tc cuprate superconductors and other charge density wave materials.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

34,95 €

Price includes VAT for Hong Kong/P.R.China

References

  1. 1

    B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).

  2. 2

    T. Timusk, and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

  3. 3

    M. Vojta, Adv. Phys. 58, 699 (2009).

  4. 4

    P. Cai, W. Ruan, Y. Y. Peng, C. Ye, X. T. Li, Z. Q. Hao, X. J. Zhou, D. H. Lee, and Y. Y. Wang, Nat. Phys. 12, 1047 (2016), arXiv: 1508.05586.

  5. 5

    G. Grüner, Density Waves in Solids (Perseus Publishing, Cambridge, Massachusetts, 1994).

  6. 6

    Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007).

  7. 7

    C. V. Parker, P. Aynajian, E. H. da Silva Neto, A. Pushp, S. Ono, J. S. Wen, Z. J. Xu, G. D. Gu, and A. Yazdani, Nature 468, 677 (2010), arXiv: 1012.0340.

  8. 8

    Y. Kohsaka, C. Taylor, P. Wahl, A. Schmidt, J. Lee, K. Fujita, J. W. Alldredge, K. McElroy, J. Lee, H. Eisaki, S. Uchida, D. H. Lee, and J. C. Davis, Nature 454, 1072 (2008).

  9. 9

    A. Mesaros, K. Fujita, H. Eisaki, S. Uchida, J. C. Davis, S. Sachdev, J. Zaanen, M. J. Lawler, and E. A. Kim, Science 333, 426 (2011), arXiv: 1108.0487.

  10. 10

    K. Fujita, C. K. Kim, I. Lee, J. H. Lee, M. H. Hamidian, I. A. Firmo, S. Mukhopadhyay, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, and J. C. Davis, Science 344, 612 (2014), arXiv: 1403.7788.

  11. 11

    M. J. Lawler, K. Fujita, J. Lee, A. R. Schmidt, Y. Kohsaka, C. K. Kim, H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, and E. A. Kim, Nature 466, 347 (2010), arXiv: 1007.3216.

  12. 12

    K. Fujita, M. H. Hamidian, S. D. Edkins, C. K. Kim, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, H. Eisaki, S. Uchida, A. Allais, M. J. Lawler, E. A. Kim, S. Sachdev, and J. C. S. Davis, Proc. Natl. Acad. Sci. 111, E3026 (2014), arXiv: 1404.0362.

  13. 13

    M. H. Hamidian, S. D. Edkins, C. K. Kim, J. C. Davis, A. P. Mackenzie, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, S. Sachdev, and K. Fujita, Nat. Phys. 12, 150 (2016), arXiv: 1507.07865.

  14. 14

    A. Mesaros, K. Fujita, S. D. Edkins, M. H. Hamidian, H. Eisaki, S. Uchida, J. C. S. Davis, M. J. Lawler, and E. A. Kim, Proc. Natl. Acad. Sci. 113, 12661 (2016).

  15. 15

    J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002).

  16. 16

    M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani, Science 303, 1995 (2004).

  17. 17

    E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, E. Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z. Xu, S. Ono, G. Gu, M. Le Tacon, and A. Yazdani, Science 343, 393 (2014), arXiv: 1312.1347.

  18. 18

    W. D. Wise, M. C. Boyer, K. Chatterjee, T. Kondo, T. Takeuchi, H. Ikuta, Y. Wang, and E. W. Hudson, Nat. Phys. 4, 696 (2008), arXiv: 0806.0203.

  19. 19

    W. D. Wise, K. Chatterjee, M. C. Boyer, T. Kondo, T. Takeuchi, H. Ikuta, Z. Xu, J. Wen, G. D. Gu, Y. Wang, and E. W. Hudson, Nat. Phys. 5, 213 (2009), arXiv: 0811.1585.

  20. 20

    T. A. Webb, M. C. Boyer, Y. Yin, D. Chowdhury, Y. He, T. Kondo, T. Takeuchi, H. Ikuta, E. W. Hudson, J. E. Hoffman, and M. H. Hamidian, Phys. Rev. X 9, 021021 (2019).

  21. 21

    R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E. Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan, Y. He, M. Le Tacon, I. S. Elfimov, J. E. Hoffman, G. A. Sawatzky, B. Keimer, and A. Damascelli, Science 343, 390 (2014), arXiv: 1312.1343.

  22. 22

    Y. Y. Peng, R. Fumagalli, Y. Ding, M. Minola, S. Caprara, D. Betto, M. Bluschke, G. M. De Luca, K. Kummer, E. Lefrancois, M. Salluzzo, H. Suzuki, M. Le Tacon, X. J. Zhou, N. B. Brookes, B. Keimer, L. Braicovich, M. Grilli, and G. Ghiringhelli, Nat. Mater. 17, 697 (2018), arXiv: 1705.06165.

  23. 23

    Y. Y. Peng, M. Salluzzo, X. Sun, A. Ponti, D. Betto, A. M. Ferretti, F. Fumagalli, K. Kummer, M. Le Tacon, X. J. Zhou, N. B. Brookes, L. Braicovich, and G. Ghiringhelli, Phys. Rev. B 94, 184511 (2016), arXiv: 1610.01823.

  24. 24

    R. Comin, R. Sutarto, F. He, E. H. da Silva Neto, L. Chauviere, A. Fraño, R. Liang, W. N. Hardy, D. A. Bonn, Y. Yoshida, H. Eisaki, A. J. Achkar, D. G. Hawthorn, B. Keimer, G. A. Sawatzky, and A. Damascelli, Nat. Mater. 14, 796 (2015), arXiv: 1402.5415.

  25. 25

    J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. Zimmermann, E. M. Forgan, and S. M. Hayden, Nat. Phys. 8, 871 (2012), arXiv: 1206.4333.

  26. 26

    T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W. N. Hardy, R. Liang, D. A. Bonn, and M. H. Julien, Nature 477, 191 (2011), arXiv: 1109.2011.

  27. 27

    Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Rev. Mod. Phys. 79, 353 (2007).

  28. 28

    Y. He, Y. Yin, M. Zech, A. Soumyanarayanan, M. M. Yee, T. Williams, M. C. Boyer, K. Chatterjee, W. D. Wise, I. Zeljkovic, T. Kondo, T. Takeuchi, H. Ikuta, P. Mistark, R. S. Markiewicz, A. Bansil, S. Sachdev, E. W. Hudson, and J. E. Hoffman, Science 344, 608 (2014), arXiv: 1305.2778.

  29. 29

    Y. Zheng, Y. Fei, K. L. Bu, W. H. Zhang, Y. Ding, X. J. Zhou, J. E. Hoffman, and Y. Yin, Sci. Rep. 7, 8059 (2017).

  30. 30

    L. Zhao, W. T. Zhang, H. Y. Liu, J. Q. Meng, G. D. Liu, W. Lu, X. L. Dong, and X. J. Zhou, Chin. Phys. Lett. 27, 087401 (2010).

  31. 31

    Y. Ando, Y. Hanaki, S. Ono, T. Murayama, K. Segawa, N. Miyamoto, and S. Komiya, Phys. Rev. B 61, R14956 (2000).

  32. 32

    Y. Fei, K. L. Bu, W. H. Zhang, Y. Zheng, X. Sun, Y. Ding, X. J. Zhou, and Y. Yin, Sci. China-Phys. Mech. Astron. 61, 127404 (2018), arXiv: 1803.03400.

  33. 33

    M. H. Hamidian, I. A. Firmo, K. Fujita, S. Mukhopadhyay, J. W. Orenstein, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, and J. C. Davis, New J. Phys. 14, 053017 (2012), arXiv: 1202.4320.

  34. 34

    X. T. Li, Y. Ding, C. C. He, W. Ruan, P. Cai, C. Ye, Z. Q. Hao, L. Zhao, X. J. Zhou, Q. H. Wang, and Y. Y. Wang, New J. Phys. 20, 063041 (2018), arXiv: 1905.02436.

  35. 35

    P. M. Chaikin, and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995).

  36. 36

    M. Tinkham, Introduction to Superconductivity, 2nd ed. (Courier Corporation, New York, 1996).

Download references

Author information

Correspondence to Yuan Zheng or Yi Yin.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fei, Y., Zheng, Y., Bu, K. et al. Visualizing the charge order and topological defects in an overdoped (Bi,Pb)2Sr2CuO6+x superconductor. Sci. China Phys. Mech. Astron. 63, 227411 (2020). https://xs.scihub.ltd/https://doi.org/10.1007/s11433-019-9454-6

Download citation

Keywords

  • cuprate superconductors
  • scanning tunneling microscopy
  • charge order
  • topological defects